Topics in quantum physics including the Schrodinger equation; angular momentum and spin; the Pauli exclusion principle; and quantum statistics. Applications in multi-electron atoms and molecules, and in solid-state, nuclear, and particle physics.
Instructor
Tesla Jeltema, Robert Johnson
Quarter offered
Fall, Winter
Particle dynamics in one, two, and three dimensions. Conservation laws. Small oscillations, Fourier series and Fourier integral solutions. Phase diagrams and nonlinear motions, Lagrange's equations, and Hamiltonian dynamics.
Instructor
Sriram Shastry
Examines electrostatics, including the electric field, potential, solutions to Laplace's and Poisson's equations, and work and energy; electricity in matter (conductors, dielectrics); magnetostatics, including the magnetic field and vector potential, Ampere's and Faraday's laws; magnetism in matter; and Maxwell's equations.
Examines electromagnetic waves, including absorption and dispersion, reflection and transmission, and wave guides; conservation laws and gauge invariance; time-dependent vector and scalar potentials and application to radiation of charges and antennae; and electrodynamics and relativity.
Consequences of the first and second laws of thermodynamics, elementary statistical mechanics, thermodynamics of irreversible processes.
Instructor
David Lederman
This course applies efficient numerical methods to the solutions of problems in the physical sciences which are otherwise intractable. Examples will be drawn from classical mechanics, quantum mechanics, statistical mechanics, and electrodynamics. Students apply a high-level programming language, such as Python, to the solution of physical problems and develop appropriate error and stability estimates.
Infinite series, topics in linear algebra including vector spaces, matrices and determinants, systems of linear equations, eigenvalue problems and matrix diagonalization, tensor algebra, and ordinary differential equations.
Instructor
Sriram Shastry
Complex functions, complex analysis, asymptotic series and expansions, special functions defined by integrals, calculus of variations, and probability, and statistics.
Fourier series and transforms, Dirac-delta function, Green's functions, series solutions of ordinary equations, Legendre polynomials, Bessel functions, sets of orthogonal functions, and partial differential equations.
Instructor
Onuttom Narayan
Statistical properties polymers; scaling behavior, fractal dimensions; random walks, self avoidance; single chains and concentrated solutions; dynamics and topological effects in melts; polymer networks; sol-gel transitions; polymer blends; application to biological systems; computer simulations will demonstrate much of the above. Students cannot receive credit for this course and PHYS 240.
Instructor
Joshua Deutsch
The standard model of particle physics; physics beyond the standard model; neutrino physics; the early universe; dark matter and dark energy; selected topics in general relativistic cosmology and high-energy astrophysics. (Formerly Nuclear and Particle Astrophysics.)
Demonstration of phenomena of classical and modern physics. Development of a familiarity with experimental methods. Special experimental projects may be undertaken by students in this laboratory.
Instructor
Art Ramirez, Aiming Yan, Jason Nielsen
General Education Code
SR
Quarter offered
Fall, Winter, Spring, Summer
Individual experimental investigations of basic phenomena in atomic, nuclear, and solid state physics.
Quarter offered
Winter, Spring
Introduction to the techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Offered in some academic years as a multiple-term course: PHYS 135A in fall and PHYS 135B in winter, depending on astronomical conditions.
Cross Listed Courses
ASTR 135
Instructor
Tesla Jeltema, David Smith
Quarter offered
Winter, Spring
Introduction to techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Intended primarily for juniors and seniors majoring or minoring in astrophysics. Offered in some academic years as single-term course PHYS 135 in fall, depending on astronomical conditions.
Cross Listed Courses
ASTR 135A
Introduction to techniques of modern observational astrophysics at optical and radio wavelengths through hands-on experiments. Intended primarily for juniors and seniors majoring or minoring in astrophysics. Offered in some academic years as single-term PHYS 135 in fall, depending on astronomical conditions.
Cross Listed Courses
ASTR 135B
Application of advanced optical techniques to the study of problems in astrophysics, physics, chemistry, biology, and engineering. Techniques include interferometry, Fourier optics, adaptive optics, optical tweezers, photon correlation spectroscopy, optical pumping, laser spectroscopy, and more.
Basic principles and mathematical techniques of nonrelativistic quantum mechanics: Schrodinger equation and Dirac notation; one-dimensional systems, including the free particle and harmonic oscillator; three-dimensional problems with spherical symmetry; angular momentum; hydrogen atom; spin; identical particles and degenerate gases.
Approximation methods in nonrelativistic quantum mechanics: time-independent perturbation theory (non-degenerate and degenerate) and addition of angular momenta; variational methods; the WKB approximation; time-dependent perturbation theory and radiation theory; scattering theory.
Basic concepts in quantum mechanics including quantum states, measurements, operators, entanglement, entanglement entropy, "no cloning" theorem, and density matrices. Classical gates, reversible computing, quantum gates. Several quantum algorithms including Deutsch's algorithm, Simon's algorithm Shor's algorithm and the Grover algorithm. Quantum error correction. Adiabatic quantum computing.
Review of select topics in statistical physics including information theory, entropy, coupled systems, phase transitions, and symmetry breaking. Introduction to multivariate algorithms, with an emphasis on their foundations in statistical physics and classical mechanics. Notebooks, data preparation, cross-validation, supervised and unsupervised learning. Practical considerations for training and optimizing neural networks and related tools.
Interatomic forces and crystal structure, diffraction, lattice vibrations, free electron model, energy bands, semiconductor theory and devices, optical properties, magnetism, magnetic resonance, superconductivity.
Emphasizes the application of condensed matter physics to a variety of situations. Examples chosen from subfields such as semiconductor physics, lasers, superconductivity, low temperature physics, magnetism, and defects in crystals.
Instructor
Aris Alexandradinata
Provides a practical knowledge of electronics that experimentalists generally need in research. The course assumes no previous knowledge of electronics and progresses according to the interest and ability of the class. Based on weekly lectures. However, with the aid of the instructor, the students are expected to learn mainly through the design, construction, and debugging of electronics projects. Students are billed a materials fee.
Instructor
Robert Johnson
Special relativity is reviewed. Curved space-time, including the metric and geodesics, are illustrated with simple examples. The Einstein equations are solved for cases of high symmetry. Black-hole physics and cosmology are discussed, including recent developments.
Cross Listed Courses
ASTR 171
Instructor
Wolfgang Altmannschofer
Physical principles and techniques used in biology: X-ray diffraction; nuclear magnetic resonance; statistics, kinetics, and thermodynamics of macromolecules; viscosity and diffusion; DNA/RNA pairing; electrophoresis; physics of enzymes; biological energy conversion; optical tweezers.
Instructor
Joshua Deutsch
General Education Code
PR-E
Develops the writing skills necessary to prepare professional publications: how to structure a physics article; write for a specific audience with clarity, precision, and concision; and deliver a short informal presentation. Additionally, students become familiar with the peer review process and the ethics of the publication process.
Instructor
Aiming Yan, Terry Terhaar
Quarter offered
Fall, Winter, Spring
Designed to provide upper-division undergraduates with an opportunity to work with students in lower division courses, leading discussions, reading and marking submissions, and assisting in the planning and teaching of a course. Prerequisite(s): excellent performance in major courses; instructor approval required; enrollment restricted to senior physics majors.
Teaching of a lower-division seminar under faculty supervision. (See PHYS 42.) Prerequisite(s): upper-division standing; submission of a proposal supported by a faculty member willing to supervise.
Independent research for seniors conducted under the supervision of a faculty mentor. Students develop a written research proposal, thesis outline, and introductory material. Prerequisite(s): Entry Level Writing and Composition requirements. Enrollment is restricted to senior applied physics, physics, and physics (astrophysics) majors.
Quarter offered
Fall, Winter, Spring
Independent research for seniors conducted under the supervision of a faculty mentor. Students prepare an oral presentation of their results, and they submit a written senior thesis on their research topic. Prerequisite(s): Entry Level Writing and Composition requirements. Enrollment is restricted to senior applied physics, physics, and physics (astrophysics) majors.
Quarter offered
Fall, Winter, Spring
Students submit petition to sponsoring agency.
Quarter offered
Fall, Winter, Spring
Tutorial