Overview of the main ideas in our current view of the universe and how these ideas originated. Galaxies, quasars, stars, black holes, and planets. Students cannot receive credit for this course after receiving credit for ASTR 2.
Instructor
Alexie Leathaud
General Education Code
SI
Quarter offered
Winter, Spring
An overview of the main ideas in our current view of the universe, and how they originated. Galaxies, quasars, stars, pulsars, and planets. Intended primarily for nonscience majors interested in a one-quarter survey of classical and modern astronomy. Students cannot receive credit for for ASTR 1 after receiving credit for ASTR 2.
General Education Code
MF
Properties of the solar system and other planetary systems. Topics include the Sun, solar system exploration, the physical nature of the Earth and the other planets, comets and asteroids, the origin of the solar system, the possibility of life on other worlds, planet formation, and the discovery and characterization of planets beyond the solar system. Intended for nonscience majors. ASTR 3, ASTR 4, and ASTR 5 are independent and may be taken separately or sequentially.
Instructor
Rebecca Jensen-Clem, Ruth Murray-Clay
General Education Code
MF
Quarter offered
Fall, Spring
Stellar evolution: observed properties of stars, internal structure of stars, stages of a star's life including stellar births, white dwarfs, supernovae, pulsars, neutron stars, and black holes. Planet and constellation identification. Intended for nonscience majors. ASTR 3, ASTR 4, and ASTR 5 are independent and may be taken separately or sequentially.
Instructor
Constance Rockosi
General Education Code
MF
The universe explained. Fundamental concepts of modern cosmology (Big Bang, dark matter, curved space, black holes, star and galaxy formation), the basic physics underlying them, and their scientific development. Intended for non-science majors. ASTR 3, ASTR 4, and ASTR 5 are independent and may be taken separately.
Instructor
Michael Bolte, Jean Brodie, Brant Robertson
General Education Code
MF
Scientific study of the Moon, Earth, Mercury, Venus, and Mars by the space program; history of rocket development; the Apollo program and exploration of the Moon; unmanned spacecraft studies of the terrestrial planets; scientific theories of planetary surfaces and atmospheres. Intended for nonscience majors.
General Education Code
SI
Examines the nature of black holes, including their creation and evolution; evidence for their existence from astronomical observations; and the role of black holes in the evolution of the universe. Also examines current ideas about the nature of space, time, and gravity.
General Education Code
MF
Introduces how we use observational data to learn about stars, galaxies, planets, and cosmology. Covers astronomical data and experimental design and basic physics and statistical techniques, such as model fitting, regression, significance tests, and error estimation.
Instructor
Constance Rockosi, Jonathan Fortney
General Education Code
SR
Introduction to research for first-year students interested in physics and astrophysics. Students complete projects in small groups with scientists. Introduces techniques for collaboration; science writing; physics careers. Continuing course spanning two quarters. Enrollment is restricted to first-year proposed astrophysics and physics majors and by permission of the instructor.
Cross Listed Courses
PHYS 9A
Instructor
Ruth Murray-Clay, Jonathan Fortney
Introduction to research for first-year students interested in physics and astrophysics. Students complete projects in small groups with scientists. Introduces techniques for collaboration; science writing; physics careers. Continuing course spanning two quarters. Prerequisite(s): ASTR 9A. Enrollment is restricted to first-year proposed applied physics, physics, and physics (astrophysics) majors and by permission of the instructor.
Cross Listed Courses
PHYS 9B
General Education Code
PR-E
Broad scientific overview of the universe, from the Big Bang to planet Earth. Origin and content: Big Bang, dark matter, dark energy, galaxies, black holes, star systems, exoplanets. Solar system and properties of Earth in relation to other planets. Physics of planetary atmospheres and impact of human activity on Earth's climate. Possibility of terraforming and of life beyond the solar system. Fate of Earth, the solar system, and the universe. Active learning class with continuous assessment. Intended for non-science majors. No previous college-level math, physics, or astronomy required.
Instructor
Alexie Leauthaud
General Education Code
SI
Quarter offered
Winter, Spring
An introduction to the observational facts and physical theory pertaining to stars. Topics include the observed properties of stars and the physics underlying those properties; stellar atmospheres; stellar structure and evolution. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.
General Education Code
MF
Introduction to modern cosmology and extragalactic astronomy. Topics include the origin of the universe, Big Bang cosmology, expansion of the universe, dark matter and dark energy, properties of galaxies and active galactic nuclei, and very energetic phenomena in our own and other galaxies. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.
General Education Code
MF
Course is primarily concerned with the structure, formation, and astrophysical manifestations of compact objects, such as white dwarfs, neutron stars, and black holes, and the astronomical evidence for their existence. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.
Instructor
Enrico Ramirez-Ruiz
General Education Code
MF
Topics include the detection of extrasolar planets, planet formation, stellar evolution and properties of Mars, the exploration of our solar system and the search for life within it, and the evolution of life on Earth. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.
Instructor
Natalie Batalha
General Education Code
MF
Our solar system and newly discovered planetary systems. Formation and structure of planets, moons, rings, asteroids, comets. Intended for science majors and qualified non-science majors. Knowledge of high school physics and an understanding of mathematics at the MATH 2 level required.
General Education Code
MF
Examines the most basic and direct connection between physics and astrophysics in order to derive a better understanding of astrophysical phenomena from first principles to the extent possible.
Instructor
Enrico Ramirez-Ruiz
The leading observational facts about stars as interpreted by current theories of stellar structure and evolution. Spectroscopy, abundances of the elements, nucleosynthesis, stellar atmospheres, stellar populations. Final stages of evolution, including white dwarfs, neutron stars, supernovae.
Physical examination of our evolving universe: the Big Bang model; simple aspects of general relativity; particle physics in the early universe; production of various background radiations; production of elements; tests of geometry of the universe; dark energy and dark matter; and formation and evolution of galaxies and large-scale structure.
Theory and practice of space and ground-based x-ray and gamma-ray astronomical detectors. High-energy emission processes, neutron stars, black holes. Observations of x-ray binaries, pulsars, magnetars, clusters, gamma-ray bursts, the x-ray background. High-energy cosmic rays. Neutrino and gravitational-wave astronomy.
Instructor
Enrico Ramirez-Ruiz
Determination of the physical properties of the solar system, its individual planets, and extrasolar planetary systems through ground-based and space-based observations, laboratory measurements, and theory. Theories of the origin and evolution of planets and planetary systems.
Instructor
Natalie Batalha
Introduction to solving scientific problems using computers. A series of simple problems from Earth sciences, physics, and astronomy are solved using a user-friendly scientific programming language (Python/SciPy).
Instructor
Brant Robertson
Quarter offered
Fall, Winter, Spring
Introduces the techniques of modern observational astrophysics at optical wavelengths through hands-on experiments and use of remote observatories. Students develop the skills and experience to pursue original research. Course is time-intensive and research-oriented.
Dir Stu Teach
Quarter offered
Fall, Winter, Spring
Survey of radiative processes of astrophysical importance from radio waves to gamma rays. The interaction of radiation with matter: radiative transfer, emission, and absorption. Thermal and non-thermal processes, including bremsstrahlung, synchrotron radiation, and Compton scattering. Radiation in plasmas. (Formerly Relative Processes.)
Instructor
Brant Robertson
Explores how physical conditions in astrophysical objects can be diagnosed from their spectra. Discussion topics include how energy flows determine the thermal state of radiating objects and how the physics of radiative transfer can explain the emergent spectral characteristics of stars, accretion disks, Lyman-alpha clouds, and microwave background. (Formerly Astrophysical Flows.)
Instructor
Ruth Murray-Clay
Lectures and seminar-style course intended to integrate new graduate students into the department; to introduce students to the research and interests of department faculty; and to expose graduate students to teaching skills and classroom techniques. (Formerly Introduction to Astronomical Research.)
Survey of some principal areas of research on the origin and growth of cosmic structures and galaxies: the dark ages; 21cm tomography; first galaxies; first stars and seed black holes; reionization and chemical enrichment of the intergalactic medium; the assembly of massive galaxies; quasi-stellar sources; interactions of massive black holes with their environment; extragalactic background radiation; numerical simulations and the nature of the dark matter; the dark halo of the Milky Way.
Instructor
Alexie Leauthaud
Survey of stellar structure and evolution.Physical properties of stellar material. Convective and radiative energy transport. Stellar models and evolutionary tracks through all phases. Brown dwarfs and giant planets. Comparison with observations. (Formerly Stellar Structure and Evolution.)
Theory and observations of protoplanetary disks. Origin and evolution of the solar nebula. Formation and evolution of the terrestrial planets and the giant planets. (Formerly Planetary Formation and Evolution.)
Instructor
Jonathan Fortney
High-energy astrophysics and the final stages of stellar evolution: supernovae, binary stars, accretion disks, pulsars; extragalactic radio sources; active galactic nuclei; black holes. (Formerly Physics of Compact Objects)
Fundamental physical theory of gaseous nebulae and the interstellar medium. Ionization, thermal balance, theory and observation of emission spectra. Interstellar absorption lines, extinction by interstellar dust. Ultraviolet, optical, infrared, and radio spectra of gaseous nebulae.
Survey of modern physical cosmology, including Newtonian cosmology, curved space-times, observational tests of cosmology, the early universe, inflation, nucleosynthesis, dark matter, and the formation of structure in the universe. (Formerly Physical Cosmology.)
Introduces probability and statistics in data analysis with emphasis on astronomical applications. Topics include probability, Bayes' theorem, statistics, error analysis, correlation, hypothesis testing, parameter estimation, surveys, time-series analysis, surface distributions, and image processing. Students learn to identify the appropriate statistical technique to apply to an astronomical problem and develop a portfolio of analytic and computational techniques that they can apply to their own research.
Instructor
Andrew Skemer, Xavier Prochaska
Structure and evolutionary histories of nearby galaxies. Stellar populations, galactic dynamics, dark matter, galactic structure and mass distributions. Peculiar galaxies and starbursting galaxies. Structure and content of the Milky Way. Evolution of density perturbations in the early universe. Hierarchical clustering model for galaxy formation and evolution. (Formerly Galactic and Extragalactic Stellar Systems.)
Instructor
Leathaud Alexie
Introduction to observational astronomy with a multi-day field trip to Lick Observatory. Students learn the fundamentals of planning and executing observational projects, manipulating and interpreting raw astronomical data with standard tools and algorithms, presenting their observations in a standard written format that is appropriate for publication, and observatory operations and career paths.
An introduction to astronomical instrumentation for infrared and visible wavelengths. Topics include instrument requirements imposed by dust, atmosphere, and telescope; optical, mechanical, and structural design principles and components; electronic and software instrument control. Imaging cameras and spectrographs are described. Offered in alternate academic years.
Instructor
Constance Rockosi
Introduction to adaptive optics and its astronomical applications. Topics include effects of atmospheric turbulence on astronomical images, basic principles of feedback control, wavefront sensors and correctors, laser guide stars, how to analyze and optimize performance of adaptive optics systems, and techniques for utilizing current and future systems for astronomical observations.
Seminar attended by faculty, graduate students, and upper-division undergraduate students.
Quarter offered
Fall, Winter, Spring
Training for following daily progress in astrophysical research to keep pace with the rapidly evolving scientific field. Students learn how to select and read interesting papers (that span a wide range of topics) efficiently and how to summarize their key results. Students have an opportunity to practice presentation skills in an informal group discussion setting.
Quarter offered
Fall, Winter, Spring
Teaches fundamental skills for scientific research in the context of coursework. Course has two branches: an instructor-intensive hands-on research training in an area beyond the thesis; and an instructor-led literature review. The research branch involves short, quarter-long projects with faculty that are designed to introduce skills and concepts broadly applicable to research but within a focused science domain. The literature branch involves short review projects for building expertise in evaluating literature, writing papers, refereeing articles, and reviewing grants and proposals.
Instructor
Brant Robertson
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Independent study or research for graduate students who have not yet begun work on their theses. Students submit petition to sponsoring agency. Enrollment restricted to graduate students.
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring
Quarter offered
Fall, Winter, Spring