This survey course explores concepts in physics and chemistry, implements the scientific method, develops problem-solving skills and encourages connection of physical science concepts to everyday life. Lab work includes hands-on exercises in both areas including written reports and some use of the computer for data analysis. Three hours of lecture and two hours of laboratory per week. Students are encouraged to enroll as first or second year students.
A mark of a great book is that everyone knows the ideas it contains even if most may not know that the book exists. Such is the case with Thomas Kuhn’s The Structure of Scientific Revolutions. Kuhn’s influence is felt every time one speaks of a “paradigm shift” or “disruption in the marketplace”. This course examines revolutionary periods in western science in cultural and intellectual context, from ancient Greece, to the transformative periods of 16th and 17th century Europe, to modern revolutions in quantum theory, cosmology, complexity, and biology. Students will investigate the applicability of Kuhn’s model in each situation. A study, designed for non-science majors, of developments in scientific thinking from Aristotle to Einstein. The focus of the course is on the transition from Aristotelian, to Newtonian, to Modern Physics. This course does not have a lab component.
The hardest part of energy problems are the associated environmental costs. The most difficult part of our environmental challenge is energy demand. Energetic processes are governed by strict physical laws and tend to increase the disorder of physical systems. Traditionally, these processes have used highly efficient but increasingly limited natural resources. Against this backdrop we are called to “love your neighbor as yourself”. As society seeks to move to more sustainable energy sources and deal with the consequences of previous energy related practices, this course will examine the complexities involved in balancing physical, moral, environmental, economic, and international policy aspects of the energy challenge.
Natural Science course
somewhat related to past CIVT 203 course but adapted for larger class
The term “Big Science” is a term to describe scientific research that requires large collaboration and significant resources. The resource requirements often mean that only federal agencies can support the research and the personnel resources often make the project international. We will introduce the Standard Models of Particle Physics and/or Cosmology. Depending on the topics covered we’ll introduce the technological base of those project. For example accelerators and detectors that are used in particle physics experiments. We will examine a few specific projects for example the discovery of the Higgs Boson. We will discuss the scientific implications on society, including technology “spin-offs”. We will have discussions on the cost-benefits for some “big science.”
Laboratory Science Course
This laboratory course introduces students to the physics of sound: its production, transmission, and reception. Lecture and laboratory will give students the opportunity to study wave mechanics and its application to areas including but not limited to music, architecture, and human physiology.
A survey of our current knowledge about the physical universe. Designed for the student interested in such topics as the solar system, nova, comets, stars, nebulae, galaxies, black holes, extraterrestrial life and who wants to increase his or her knowledge of our place in the cosmos. Includes observations of the night sky.
Selected topics offered on sufficient demand. Topics include partifcle physics, atomic and molecular physics, acoustics, biophysics, and solid state physics.
Independent study of topics approved by department.