2017-2018 Undergraduate General Catalog

CHEM - Chemistry

CHEM 102 Trustee's Fellowship in Chemistry

This course is limited to those freshman chemistry majors who are distinguished scholars. It will acquaint the student with career options, with chemical instrumentation and lab assisting. Students will be allowed to serve as junior lab assistants second semester under the direction of a senior lab assistant and the professor. Students may learn FT-IR, FT-NMR, GC-MS or other instrumentation. This will prepare them for doing research right after their freshman year. Must take both semesters to earn 1 credit.

Credits

1

CHEM 110 Chemistry and Your Environment (NS)

This course is designed for the non-science major and will assist the student in understanding the role chemistry plays in his/her life. Topics of current interest are discussed, and the chemical principles required for a more thorough understanding of them are developed. Three hours of lecture and two hours of laboratory per week.

Credits

4

CHEM 115 Physical Science

This survey course explores concepts in physics and chemistry, implements the scientific method, develops problem-solving skills and encourages connection of physical science concepts to everyday life. Lab work includes hands-on exercises in both areas including written reports and some use of the computer for data analysis. Three hours of lecture and two hours of laboratory per week. Students are encouraged to enroll as first or second year students.

Credits

4

Cross Listed Courses

PHYS 115

CHEM 116 General Chemistry I (NS)

An introduction to chemistry at the college level. The main conceptual areas of emphasis of the course are outlined in the catalog: measurements, atomic and electronic structure, bonding, molecular structure and shape, stoichiometry, types of chemical reactions, thermochemistry, gases, liquids, and solutions, and nuclear chemistry. Three hours of lecture and two hours of laboratory per week.

Credits

4

CHEM 117 General Chemistry II

The second course in general chemistry at the college level. The course serves as a prerequisite for other courses. The main conceptual areas of emphasis of the course are kinetics, equilibrium, acids and bases (including buffers), thermodynamics, electrochemistry, solids and materials, coordination chemistry. Three hours of lecture and two hours of laboratory per week.

Credits

4

Prerequisites

CHEM 116

CHEM 120 Accelerated General Chemistry (NS)

This is an accelerated general chemistry course covering topics typically encountered in a two semester course, (e.g. bonding, equilibrium including buffers, stoichiometry, chemical kinetics, oxidation-reduction). Students are required to have a 26+ ACT score and 1 year of high school chemistry with a grade of "B" or better. Three hours of lecture and two hours of laboratory per week.

Credits

4

CHEM 130 Chemistry in Our Changing World (SI)

This course is a non-lab chemistry course for non-science majors. It is designed to acquaint students with the impact that chemistry has on their everyday life and assist them in understanding the basics of those interactions from a scientific, social, and business perspective. Topics will focus on the science behind issues facing our society, community and the world today. The class will include topical lectures (general chemistry, organic, biochemical, and environmental chemistry), in class lab demonstrations, and trips to local facilities and companies to experience the application of chemistry in our world.

Credits

3

Prerequisites

Natural Science Core course

CHEM 145 Survey of Organic and Biochemistry

Explores the fundamentals of organic chemistry (nomenclature, functional groups, reactions) with an introduction to biochemistry (amino acids, proteins, carbohydrates, lipids, enzymes, nucleic acids and the metabolic cycles). Three hours of lecture and two hours of laboratory per week. Students desiring more than two semesters of Chemistry will normally follow the sequence 116/117 or 120, then 201, 202.

Credits

4

Prerequisites

CHEM 116 or 120

CHEM 199 Independent Study

This course offers the opportunity to engage in experimental research with a faculty mentor. One credit hour will require four hours of laboratory work per week for the semester plus a comprehensive report, a departmental seminar, and if appropriate a presentation at a scientific meeting. This course designation is normally not used to replace a traditional course.

Credits

1- 4

Prerequisites

Permission of the Instructor

CHEM 201 Organic Chemistry I

This course covers nomenclature, reactions, and structure of aliphatic hydrocarbons and alcohols and introduces carbonyl chemistry, structural determination, organic spectroscopy, reaction mechanisms, stereochemistry, and multi-step syntheses. Laboratory emphasizes separation, reactions, structural determination, and physical characteristics of organic compounds. Three hours of lecture and four hours of laboratory per week. CHEM 201 is the organic foundation requirement for the American Chemical Society Chemistry and Biochemistry majors.

Credits

4

Prerequisites

CHEM 117 or 120

CHEM 202 Organic Chemistry II

This course is the second of a two-semester sequence in organic chemistry that will cover functional groups ranging from ethers to biological macromolecules. Within each functional group, we will explore topics in nomenclature, physical and chemical properties, reactions, reaction mechanisms, and spectroscopic analysis.

Credits

4

Prerequisites

CHEM 201

CHEM 222 Inorganic Chemistry

This is a basic inorganic chemistry course with an extension of general chemistry supportive of the lab experiences. Lecture will emphasize atomic and molecular structure, molecular orbital theory, chemical equilibria, acid-base chemistry, electrochemistry, solid-state structure and the theoretical basis of complex ion chemistry. Laboratory will be centered on systematic identification of inorganic cations and anions, with some experiences in kinetics and electrochemistry. CHEM 222 is the inorganic foundation requirement for the American Chemical Society Chemistry and Biochemistry majors.

Credits

4

Prerequisites

CHEM 201

CHEM 242 Analysis

This course covers fundamental and applied topics of modern and classical analytical methods. Lecture emphasizes statistical analysis of data, method development, equilibrium, electrochemistry, and chromatography. The laboratory experience includes a mix of wet chemical and instrumental methods with an emphasis on careful and precise quantitative work. Three hours of lecture and four hours of laboratory per week. CHEM 242 is the analytical foundation requirement for the American Chemical Society Chemistry and Biochemistry majors.

Credits

4

Prerequisites

CHEM 201 and 222

CHEM 250 Instrument Proficiency for Scientists

Each offering enables students to develop a solid foundation in the theoretical aspects and operating principles, as well as develop hands-on proficiency in the operation of the featured instrument and interpretation of the data. Instrument rotation includes: Gas Chromatography - Mass Spectrometer, Raman Spectrometer, Nuclear Magnetic Resonance Spectrometer, Fourier Transform Infrared Spectrometer, Atomic Absorption and Ultraviolet-Visible Spectrometers*, and High Performance Liquid Chromatograph*. Instruments will be added as they are acquired.

Credits

2

Prerequisites

CHEM 202 and CHEM 242 (Prerequisite or Corequisite)

CHEM 299 Independent Study

This course offers the opportunity to engage in experimental research with a faculty mentor. One credit hour will require four hours of laboratory work per week for the semester plus a comprehensive report, a departmental seminar, and if appropriate a presentation at a scientific meeting. This course designation is normally not used to replace a traditional course.

Credits

4

Prerequisites

Permission of the Instructor

CHEM 301 Physical Chemistry I (SI)

This course provides the theoretical basis for all of chemistry and related subjects, emphasizing thermodynamics, kinetics, quantum mechanics and reaction dynamics. Laboratory includes physical methods of measurement and computational techniques. Four hours of lecture-discussion and four hours of laboratory per week. CHEM 301 and 302 together are the physical chemistry foundation requirement for the American Chemical Society Chemistry major. CHEM 301 is the physical chemistry foundation requirement for the American Chemistry Society Biochemistry major.

Credits

4

Prerequisites

CHEM 242; MATH 152

CHEM 302 Physical Chemistry II

This course is a follow-up to CHEM 301. It covers quantum chemistry, reaction dynamics, spectroscopy and statistical mechanics. The laboratory will be concerned with several experiments in physical chemistry with emphasis on various spectroscopic measurements and application of a variety of computational software for quantum calculations. Four hours of lecture-discussion and four hours of laboratory per week. CHEM 301 and 302 are the physical chemistry foundation requirement for the American Chemical Society Chemistry major.

Credits

4

Prerequisites

CHEM 301; MATH 152

CHEM 305 Biochemistry

This is a one-semester, foundational course in biochemistry intended for chemistry and biochemistry majors. Lecture topics covered in this course fall into three general areas: (1) structure, function, and reactivity of biological macromolecules, (2) cellular metabolism and metabolic cycles, and (3) the central dogma of molecular biology. Laboratory is intended to expose students to a variety of biochemical techniques and applications.

Credits

4

Prerequisites

CHEM 202

CHEM 311 Advanced Analytical Chemistry (W)

This course focuses on instrumental methods of analysis. The lecture is devoted primarily to instrument design and the advantages and disadvantages of that design. Laboratory is emphasized and centers on method development projects. Two hours of lecture and six hours of laboratory per week.

Credits

4

Prerequisites

CHEM 301

CHEM 330 Medicinal Chemistry (W)

This is a one-semester course in medicinal chemistry. The first part of this course covers introduces students to the field of medicinal chemistry and covers fundamental topics and concepts relating to the properties, design, metabolism, and modeling of pharmaceutical drugs. The remainder of the course is devoted to the major classes of therapeutic drugs with an emphasis on categorizing physiological effects with functional groups and binding site stereochemistry. Laboratory provides students an introduction to computational modeling, experimental design, exploration of drug properties, and the synthesis and evaluation of biologically-active molecules.

Credits

4

Prerequisites

CHEM 305

CHEM 331 Advanced Organic Chemistry (W)

Advanced topics in organic chemistry, including spectroscopy, mechanisms and synthesis (including natural products) are covered. Emphasis varies. Three hours of lecture and four hours of laboratory per week.

Credits

4

Prerequisites

CHEM 301; CHEM 202

CHEM 341 Advanced Inorganic Chemistry

This course explores advanced topics in Inorganic Chemistry including atomic structure, covalent structures, group theory, molecular orbital theory, acid-base principles, solid-state chemistry, transition elements and coordination chemistry, bonding theories, spectroscopy, mechanisms, organometallic chemistry, catalysis, and bioinorganic chemistry. Laboratory exercises will focus on the synthesis and characterization of inorganic compounds using instrumentation. Three hours of lecture, four hours of laboratory per week.

Credits

4

Prerequisites

CHEM 222

CHEM 351 Chemistry of High Polymers

The structure and properties of macromolecules will be considered. Methods of synthesis and analysis of these polymers will be treated in some detail. Industrial processes for the preparation and manufacture of some important commercial polymers will be included.

Credits

4

Prerequisites

CHEM 202; CHEM 301

CHEM 381 Advanced Physical Chemistry

Advanced topics in physical chemistry with emphasis on advanced quantum chemistry, statistical thermodynamics, spectroscopy, quantum dynamics, matter-electromagnetic radiation interaction, nuclear dynamics beyond the Born-Oppenheimer regime and lasers. This course is typically problem oriented, and will use computer resources extensively, including some computer programming. Students may take this course with interests in chemistry, physics and mathematics.

Credits

4

Prerequisites

CHEM 301; PHYS 371; MATH 220; MATH 310

CHEM 395 Internship

Consult the department chair for a listing of available opportunities. Plans for an internship must be made well in advance of the term in which the internship is to be carried out.

Credits

4

Prerequisites

Permission of the Instructor

CHEM 399 Independent Study

This course offers the opportunity to engage in experimental research with a faculty mentor. One credit hour will require four hours of laboratory work per week for the semester plus a comprehensive report, a departmental seminar, and if appropriate a presentation at a scientific meeting. This course designation is normally not used to replace a traditional course.

Credits

1- 3

Prerequisites

Permission of the Instructor